
Simulation of a VHDL code for a pipelined implementation of CORDIC

1. Copy the VHDL file Cordic.Vhd for CORDIC algorithm verification from

S:\TN\E\027_Digital_Kommunikationselektronik\CORDIC VHDL code\ to
your own directory.

2. Create a new FPGA project by clicking on File » New » Project » FPGA
Project and rename the new project file by clicking on File » Save Project
As.

3. Add the VHDL file Cordic.Vhd to the project by right clicking the project file
name in the Projects panel and selecting Add Existing to Project ….

4. Open Cordic.Vhd by double clicking the file name Cordic.Vhd.
5. Click on Design » Create VHDL Testbench. A testbench

Test_cordic.VHDTST is created and opened as follows.

--
-- VHDL Testbench for cordic
-- 2006 10 23 11 57 33
-- Created by "EditVHDL"
-- "Copyright (c) 2002 Altium Limited"
--

Library IEEE;
Use IEEE.std_logic_1164.all;
Use IEEE.std_logic_textio.all;
Use STD.textio.all;
--

--
entity Testcordic is
end Testcordic;
--

--
architecture stimulus of Testcordic is
 file RESULTS: TEXT open WRITE_MODE is "results.txt";
 procedure WRITE_RESULTS(
 angle: std_logic_vector(7 downto 0);
 clk: std_logic;
 datax: std_logic_vector(11 downto 0);
 datay: std_logic_vector(11 downto 0);
 res: std_logic;
 x_n: std_logic_vector(11 downto 0);
 y_n: std_logic_vector(11 downto 0)
) is
 variable l_out : line;
 begin
 write(l_out, now, right, 15);
 write(l_out, angle, right, 9);
 write(l_out, clk, right, 2);
 write(l_out, datax, right, 13);
 write(l_out, datay, right, 13);
 write(l_out, res, right, 2);
 write(l_out, x_n, right, 13);
 write(l_out, y_n, right, 13);
 writeline(RESULTS, l_out);
 end procedure;

 component cordic

1

 port (
 angle in std_logic_vector(7 downto 0); :
 clk: in std_logic;
 datax: in std_logic_vector(11 downto 0);
 datay: in std_logic_vector(11 downto 0);
 res: in std_logic;
 x_n: out std_logic_vector(11 downto 0);
 y_n: out std_logic_vector(11 downto 0)
);
 end component;

 signal angle: std_logic_vector(7 downto 0);
 signal clk: std_logic;
 signal datax: std_logic_vector(11 downto 0);
 signal datay: std_logic_vector(11 downto 0);
 signal res: std_logic;
 signal x_n: std_logic_vector(11 downto 0);
 signal y_n: std_logic_vector(11 downto 0);

begin
 DUT:cordic port map (
 angle => angle,
 clk => clk,
 datax => datax,
 datay => datay,
 res => res,
 x_n => x_n,
 y_n => y_n
);

 STIMULUS0:process
 begin
 -- insert stimulus here
 wait;
 end process;

 WRITE_RESULTS(
 angle,
 clk,
 datax,
 datay,
 res,
 x_n,
 y_n
);

end architecture;
--

--

6. In the testbench, insert the some statements before the STIMULUS0:process and

some statements in the process as follows:

clk <= not clk after ns; 1
 res <= '0', '1' after 2 ns;

 STIMULUS0:process
 begin
 -- insert stimulus here
 angle <= B"00100000";

2

 datax <= B"010000000000";
 y B"000000000000"; data <=
 wait for 2 ns;
 angle <= B"00110000";
 datax <= B"011000000000";
 y B"000000000000"; data <=
 wait for ns; 2

 end process;

The statement “clk <= not clk after 1 ns;” defines the behavior of a
simulated clock signal. The time 1 ns is one half of the time period for the clock. The
time 1 ns is chosen for convenience and is not a realistic value for the FPGA. The
frequency of the clock may be changed by changing the time to other values. Notice that
this statement can only be used for simulation. The statement “res <= '0', '1'
after 2 ns;” sets the res signal to ‘0’ at the beginning and sets it to ‘1’ after 2 ns. In
the process STIMULUS0, the values of input signals are changed after 2 ns. You can add
other input signal values in the process.

7. Add an initial value to the signal clk as follows:

signal clk: std_logic := '0';

After the changes, the testbench looks like the following:

--
-- VHDL Testbench for cordic
-- 2006 10 23 11 57 33
-- Created by "EditVHDL"
-- "Copyright (c) 2002 Altium Limited"
--

Library IEEE;
Use IEEE.std_logic_1164.all;
Use IEEE.std_logic_textio.all;
Use STD.textio.all;
--

--
entity Testcordic is
end Testcordic;
--

--
architecture stimulus of Testcordic is
 file RESULTS: TEXT open WRITE_MODE is "results.txt";
 procedure WRITE_RESULTS(
 angle: std_logic_vector(7 downto 0);
 clk: std_logic;
 datax: std_logic_vector(11 downto 0);
 datay: std_logic_vector(11 downto 0);
 res: std_logic;
 x_n: std_logic_vector(11 downto 0);
 y_n: std_logic_vector(11 downto 0)
) is
 variable l_out : line;
 begin
 write(l_out, now, right, 15);
 write(l_out, angle, right, 9);

3

 write(l_out, clk, right, 2);
 write(l_out, datax, right, 13);
 write(l_out, datay, right, 13);
 write(l_out, res, right, 2);
 write(l_out, x_n, right, 13);
 write(l_out, y_n, right, 13);
 writeline(RESULTS, l_out);
 end procedure;

 component cordic
 port (
 angle in std_logic_vector(7 downto 0); :
 clk: in std_logic;
 datax: in std_logic_vector(11 downto 0);
 datay: in std_logic_vector(11 downto 0);
 res: in std_logic;
 x_n: out std_logic_vector(11 downto 0);
 y_n: out std_logic_vector(11 downto 0)
);
 end component;

 signal angle: std_logic_vector(7 downto 0);
 signal clk: std_logic := '0';
 signal datax: std_logic_vector(11 downto 0);
 signal datay: std_logic_vector(11 downto 0);
 signal res: std_logic;
 signal x_n: std_logic_vector(11 downto 0);
 signal y_n: std_logic_vector(11 downto 0);

begin
 DUT:cordic port map (
 angle => angle,
 clk => clk,
 datax => datax,
 datay => datay,
 res => res,
 x_n => x_n,
 y_n => y_n
);
 clk <= not clk after 1 ns;
 res <= '0', '1' after 2 ns;
 STIMULUS0:process
 begin
 -- insert stimulus here
 angle <= B"00100000";
 datax <= B"010000000000";
 y B"000000000000"; data <=
 wait for 2 ns;
 angle <= B"00110000";
 datax <= B"011000000000";
 datay <= B"000000000000";
 wait for 2 ns;
 end process;

 WRITE_RESULTS(
 angle,
 clk,
 datax,
 datay,
 res,
 x_n,
 y_n
);

4

end architecture;
--

--

8. Select the simulation tool and the testbench document by right clicking the project

file name in the Projects panel and selecting Simulation tab from within the
Project Options dialog.

9. Select the simulation tool DXP Simulator from the drop-down list for Tool.
10. Select the testbench document “Test_cordic.VHDTST” from the drop-down list

for Testbench Document and click the OK button.
11. Initiate a simulation session by selecting Simulator » Simulate from the menu.
12. When you first run a simulation from a testbench, the following window will be

shown. Whilst performing this process, you may see an error appearing in the
Messages panel with the message: “Unbounded instance DUT of component
Cordic”. Do not be concerned as this is normal when you first run a simulation.

5

13. If the correct compile order is shown as in the above window, click the No

button. The following window will be shown.

6

14. Click the OK button. The following window will be shown.

15. You can add signals to the display of the simulation by setting a tick for the

signals in Show Wave. The signals should also be Enabled. Click on the Done
button. If you need to change the signals for the display later, this window can be
accessed by clicking Simulator » Signals.

16. After the above step, the following window is shown. The following text explains

details of some functions.
• The “plus” icon next to the bus name indicates a bus signal. Clicking on

this icon will expand the bus into its individual signals for closer
inspection.

• The time cursor (indicated by the purple vertical bar) can be dragged along
the time axis via the mouse. The current position of the cursor is provided
in the time bar across the top of the display. The values of signals under
the time cursor will be shown in the column Value.

• Zooming in or out is achieved by pressing the Page Up or Page Down
keys respectively.

• The display format of the individual signals can be altered via the menu
item Tools » Format and Radix.

7

Run Simulation
To A Time

17. Run the simulation to a time by clicking the button Run Simulation To A

Time. The following window will be shown. You may change the time to 20 ns
and click the OK button.

18. After the simulation, you can change the zoom and the time cursor to check the
signal values.

8

19. Click the Save button in the menu, the following dialog window will be shown.

You can save the simulation result in a wave file.

9

10

You can read the other simulation commands from Chapter 7 of the document
“FPGA Design Training Module” in the file Training Module 5 FPGA
Design.pdf in the directory
S:\TN\E\027_Digital_Kommunikationselektronik\Altium Manuals and
Tutorials\.

20. You can reset the simulator by clicking Simulator » Reset from the menu.
Notice that you may only reset the simulator once. If it does not work after
resetting the simulator. You must click Simulator » End to terminate the
simulation. Then you should click Simulator » Simulate for further
simulations.

21. You can try to change the statements in the stimulus process of the testbench and

obtain other simulation results.

Notice that one can also simulate the VHDL code in your project previously created
in Lab2. After opening your project, you should open a schematic document and
select Tools » Convert » Create VHDL Testbench from the menu.

 Reference:

“FPGA Design Training Module” in the file Training Module 5 FPGA
Design.pdf in the directory
S:\TN\E\027_Digital_Kommunikationselektronik\Altium Manuals and
Tutorials\.

