Circuit Debugging Round-I

Max.Time:15 minutes
No of Questions: 15

1. Find the value of R if the current flowing through R is 4 Ampere.

a) 3.5Ω
b) 2.5Ω
c) 1Ω
d) 4.5Ω
Applying KVL loop1\&loop2
$50=6 x i_{1}+7\left(i_{1}-i_{2}\right)$
$\mathrm{i}_{2}=4 \mathrm{Amps}$ given
$50=6 x i 1+7\left(\mathrm{i}_{1}-4\right)$
$50+28=13 i_{1}$
$\mathrm{i}_{1}=78 / 13=6 \mathrm{Amps}$
$0=7\left(i_{2}-i_{1}\right)+i_{2} \times R$
$0=7 x-2+4 x R$
$4 \mathrm{R}=14$
$R=14 / 4=3.5 \Omega$
2. Find the equivalent capacitance across "ab".

a) $0.2 \mu \mathrm{~F}$
b) $0.1 \mu \mathrm{~F}$
c) $0.5 \mu \mathrm{~F}$
d) $0 \mu \mathrm{~F}$

All capacitors are in parallel so $\mathrm{C}_{\mathrm{ab}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}+\mathrm{C}_{5}=5 \times 0.1=\mathbf{0 . 5 \mu \mathrm { F }}$
3. For the switch in the circuit, taking 0 as open and 1 as closed the expression of Y is

a) $A+(B+C) D$
b) $A+B C+D$
c) $A(B C+D)$
d) None of this
$Y=$ input
when A and B and C is $O N$ or A and D is $O N$
$y=A(B C+D)$
4. If the memory chip size is 256×1 bits, then number of chips required to make up 1 KB of memory is
a) 32
b) 24
c) 12
d) 1000

Chip size $=256$ bits
1 kilo byte $=1024$ bytes
1 byte $=8$ bits
1 kilo byte $=1024 \times 8$ bits $=8192$ bits (or simply $1 \mathrm{kB}=1024 \times 8=2^{10} \times 2^{3}$ bits)
1 chip can hold 256 bits
So number of chips required $=8192 / 256=32$ or $\left(2^{13} / 2^{8}=2^{5}=32\right)$
5. The time constant in the given network is
a) CR
b) $2 C R$
c) $C R / 4$
d)CR/2
c) $\mathrm{CR} / 4$
d) $\mathrm{CR} / 2$

Time constant $\mathrm{T}=\mathrm{RC}$
$R_{\text {eff }}=R^{2} / 2 R=R / 2$
$\mathrm{C}_{\text {eff }}=\mathrm{C}_{1}+\mathrm{C}_{2}=2 \mathrm{C}$

$\mathrm{T}=(\mathrm{R} / 2) \mathrm{x}(\mathbf{2 C})=\mathrm{RC}$

6. What is the bandwidth of the circuit?

a) 31.8 Hz
b) 32.3 Hz
c) 142 Hz
d) 7.2 kHz
Band width=BW=fr/Q;
fr Resonant frequency
Q Quality factor $\mathrm{fr}=1 /\left(2 \pi^{*} \operatorname{sqrt}\left(\mathrm{~L}^{*} \mathrm{C}\right)\right)$
$Q=(1 / R) * \operatorname{sqrt}(L / C)$;
$B W=R /(2 \pi * L) ;$
$=1 \mathrm{Kohm} /\left(2 \pi^{*} 5 \mathrm{H}\right)$;
$=32.3 \mathrm{~Hz}$
7. What is the current through the LED?

a) 0 mA
b) 23 mA
c) 18 mA
d) 13 mA
$\mathrm{I}=\mathrm{V} / \mathrm{R}$
$R=330, V=6-1.5 \mathrm{~V}$ (LED drop voltage) So $\mathrm{V}=4.5 \mathrm{~V}$
$I=4.5 / 330$
$\mathrm{I}=0.013 \mathrm{~A}$ or 13 mA
8.The depletion-mode MOSFET
a)can operate with only positive gate voltages
b)can operate with only negative gate voltages
c) cannot operate in the ohmic region
d)can operate with positive as well as negative gate voltages
8. Initially, the closed-loop gain (Acl) of a Wien-bridge oscillator should be
a) $\mathrm{Acl}<3$
b)Acl > $\mathbf{3}$
c) 0
d)Acl approximately equals to 1
$1+R f / R \leq 3$ but initially it is greater than 3 . Wien Bridge fixed condition for working.
9. What is the voltage across R1 if the $\mathrm{P}-\mathrm{N}$ junction is made of silicon?

a) 12 V
b) 11.7 V
c) 11.3 V
d) 0 V

Vout=Vin-Vsi,
Silicon diode potential barrier drop is 0.7 V
Vout=12-0.7
Vout=11.3V
11. How many flip-flops are required to produce a divide-by-128 counter device?
a) 1
b)4
c) 6
d)7

A 1 bit counter can count two bits 1 and 0 which is stored by using a single bit storage digital device called flip flop ,for a single bit count it requires 2 flip flops.
For n bit counter it requires 2^{n} flipflops.
$2^{7}=128$
7 flip flops are required.
12. If a diode is connected across resistor $R B$ (positive end up) in the given figure, what is the new duty cycle of the output waveform?

a) 56%
b) 44%
c)21.6\%
d) 17.4%
$\mathrm{Tm}=0.7^{*} \mathrm{R} 1^{*} \mathrm{C}, \mathrm{Ts}=0.7^{*} \mathrm{R} 2 * \mathrm{C}$
duty cycle= R1/(R1+R2) or $\mathrm{Tm} /(\mathrm{Tm}+\mathrm{Ts})$
13. The register in the 8085A that is used to keep track of the memory address of the next op-code to be run in the program is the:
a)stack pointer b)program counter c)instruction pointer d)accumulator
14.The 8-bit address bus allows access to an address range of:
a) 0000 to $F F F F H$ b) 000 to FFFH c) 00 to FFH d) 0 to FH

8 bits address can assign from 0 to 15 , but address is always in Hexadecimal ie, $\mathbf{0}$ to \mathbf{F}
15. Which of the following will not normally be found on a data sheet?
a)Minimum HIGH level output voltage
b)Maximum LOW level output voltage
c) Minimum LOW level output voltage
d)Maximum HIGH level input current

